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Abstract—Human behaviors in recommendation systems are driven by many high-level, complex, and evolving intentions behind their
decision making processes. In order to achieve better performance, it is important for recommendation systems to be aware of user
intentions besides considering the historical interaction behaviors. However, user intentions are seldom fully or easily observed in
practice, so that the existing works are incapable of fully tracking and modeling user intentions, not to mention using them effectively into
recommendation. In this paper, we present the Intention-Aware Sequential Recommendation (ISRec) method, for capturing the
underlying intentions of each user that may lead to her next consumption behavior and improving recommendation performance.
Specifically, we first extract the intentions of the target user from sequential contexts, then take complex intent transition into account
through the message-passing mechanism on an intention graph, and finally obtain the future intentions of this target user from inference
on the intention graph. The sequential recommendation for a user will be made based on the predicted user intentions, offering more
transparent and explainable intermediate results for each recommendation. Extensive experiments on various real-world datasets
demonstrate the superiority of our method against several state-of-the-art baselines in sequential recommendation in terms of different
metrics.
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1 INTRODUCTION

1 NOWADAYS, recommendation systems have been deeply2

integrated with services that provide personalized3

content to users, including E-commerce, social media, and4

search engines, etc. Many scenarios in recommendation can5

be modeled as a sequential recommendation problem, i.e.,6

using historical user behaviors to recommend what this7

user might be interacted with in the future. For example,8

in online shopping systems, content providers need to9

generate recommendations for users based on their historical10

shopping logs.11

There exists a rich literature in sequential recommenda-12

tions [1], [2], [3], [4], [5], [6], [7]. Some early works utilize13

the Markov Chain (MC) to predict the next behavior of14

the target user through learning a probability matrix that15

models the relations between the current user behavior16

and the next [1], [2], [3], [6], [8], [9]. With the success17

of Deep Neural Network (DNN), many works begin to18

focus on developing DNN based sequential recommendation19

models. Recurrent Neural Network (RNN) based methods20

for sequential recommendation are classic examples, which21

aggregate all history behaviors of users via a hidden state22

and achieve promising performance [10]. More recently,23

Transfomer, based on the self-attention mechanism, is also24

adopted by sequential recommendation models [4], [5] to25

uncover the syntactic and semantic patterns between items26

in user history behaviors.27
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In practice, user behavior patterns in recommendation 28

systems are highly driven by their intentions behind. To 29

provide better recommendations, it is important to capture 30

user intentions besides their historic interactions. However, 31

existing works on sequential recommendation are hard to 32

discover the user intentions which motivate a consumption 33

behavior and thus lack the ability to explain the reason for 34

a particular item to be recommended to a user. Discovering 35

and modeling user intentions poses great challenges for 36

sequential recommendation because user intentions are 37

seldom fully observed, nor do they always stay static and 38

fixed in the course of time. Furthermore, users can have 39

multiple intentions which are correlated with each other and 40

the changing of one user intention may lead to the changes 41

of other intentions, which makes capturing user intentions 42

dynamically even more difficult. 43

To solve these challenges, in this paper, we proposed 44

ISRec1, a structured intention-aware model for sequential 45

recommendation. Besides being more effective in recommen- 46

dation accuracy, ISRec is able to explain why a particular 47

item is chosen as the candidate for the next recommen- 48

dation. Specifically, we first discover user intentions from 49

their past consumption behaviors such as rating an item, 50

writing reviews for an item, etc., then adopt an intention 51

graph to capture the correlations among user intentions. 52

The structured intent transition process for the target user 53

is modeled through the message passing schema on this 54

intention graph and the future user intention can be obtained 55

by conducting inference on the intention graph. As such, the 56

final recommendation can be made based on the predicted 57

future user intentions, with the ability to explain the reason 58

1We will release the source code at publication time.
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of selecting a candidate item for the next recommendation.59

Therefore, our proposed ISRec model increases the recom-60

mendation explainability by identifying the underlying user61

intentions that may lead to their next consumption behaviors,62

providing a more transparent and explainable intermediate63

for sequential recommendation.64

We further conduct extensive experiments on several65

real-world datasets, showing that the proposed ISRec model66

outperforms various state-of-the-art baselines consistently67

in terms of different evaluation metrics such as Hit Ratio,68

NDCG (normalized discounted cumulative gain) and MRR69

(mean reciprocal rank). Our promising experimental results70

demonstrate that the ISRec model can identify explainable71

user intentions, model the structured user intent transition72

process, and make accurate sequential recommendations in73

a more explainable way.74

The contributions of this paper are summarized as75

follows:76

• We propose to utilize user intentions behind consump-77

tion behaviors to improve both the effectiveness and78

the explainability in sequential recommendation.79

• Our proposed intention-aware sequential recommen-80

dation model (ISRec) is capable of identifying user81

intentions as well as recognizing the structured user82

intent transition process to provide more transparent83

and explainable intermediate results for sequential84

recommendation.85

• We conduct extensive experiments on several real-86

world datasets, comparing the proposed ISRec model87

with various state-of-the-art approaches. Empirical88

experimental results demonstrate the effectiveness89

and the explainability of our ISRec model.90

We review related work in Section 2, followed by a de-91

tailed formulation of our proposed Intention-Aware Sequen-92

tial Recommendation (ISRec) model in Section 3. Section93

4 presents our experimental results including quantitative94

comparisons, case studies, and ablation studies. Finally, we95

conclude our work in Section 5.96

2 RELATED WORK97

In this section, we review related works on collaborative98

filtering, sequential recommendation, intention-aware recom-99

mendation, and structured modeling.100

Collaborative Filtering. When it comes to recommenda-101

tion, collaborative filtering with no doubt serves as one of102

the most widely adopted strategies so far. The core idea103

of collaborative filtering aims at learning user preferences104

based on their historical behaviors. Matrix factorization,105

one of the most famous collaborative filtering technique,106

factorizes the user-item interaction matrix into two low-rank107

matrices where each low-rank matrix represents either latent108

user preferences or latent item features. In addition, item109

similarity based methods [11], [12] estimate user preferences110

through directly looking at their past consumed items and111

calculating the similarities between the candidate items and112

those consumed items. The more recent deep learning based113

methods [13], [14], [15] achieve massive improvement by114

learning highly informative user preference representations.115

These works do not take sequential factors into account.116

Sequential Recommendation. Compared with the classic 117

recommendation methods such as collaborative filtering [16], 118

[17], [18] or matrix factorization [19], [20], sequential rec- 119

ommendation targets at capturing the temporal changing 120

patterns of user preferences. Early works on sequential 121

recommendation typically use Markov Chains (MC) to model 122

users’ sequential patterns based on their historical behaviors. 123

The key assumption behind this line of works is that the 124

next item users may consume solely depends on their last 125

consumed item (i.e., first-order MC) or last several consumed 126

items (i.e., high-order MC) [1], [3], [6], [9]. The huge success 127

of Deep Neural Networks (DNN) has motivated the appli- 128

cations of deep models in sequential recommendation as 129

well [4], [5], [6]. One line of works is based on RNN and its 130

variants, which seeks to encode user history behaviors into 131

latent representations. In particular, Hidasi et al. [21] employ 132

Gated Recurrent Units (GRUs) to capture the sequences 133

of user behaviors for session-based recommendation, and 134

they later propose an improved version [22] with a different 135

loss function. Liu et al. [7] and others [23], [24] study the 136

problem of sequential recommendation with the contextual 137

information taken into accounts. In addition, unidirectional 138

[4] and bidirectional [5] self-attention mechanisms are also 139

utilized to capture sequential patterns of user behaviors, 140

which achieve state-of-the-art performance on sequential 141

recommendation. However, these methods merely focus on 142

modeling the relations between the history behaviors of 143

the target user and her next behavior, lacking the ability to 144

capture user intentions hidden in the behaviors. We argue 145

it is the user intentions that drive users to conduct certain 146

behaviors and therefore existing methods suffer from being 147

unable to understand why the target user conducts her next 148

behavior. 149

Intention-aware Recommendation. More recently, vari- 150

ous intention-aware recommendation literatures that con- 151

sider intentions in users’ behavior modeling are proposed. 152

Zhu et al. [25] use the category of items in users’ behaviors 153

to represent intentions directly. This method is simple and 154

provides an intuitive way to define user intentions. Chen et al. 155

[26] adopt attention mechanism to capture users’ category- 156

wise intention, which is denoted as a pair of action type 157

and item category. In [27], a neural intention-driven method 158

is proposed to model the heterogeneous intentions behind 159

users’ complex behaviors. Wang et al. [28] focus on some 160

limitations of classical Collaborative Filtering methods, and 161

try to disentangle the representations of users and items 162

under different intentions. Tanjim et al. [29] utilize self- 163

attention mechanism to find similarities in user behaviors 164

and temporal convolutional network to capture users in- 165

tentions. However, they pay little attention to modeling 166

the relations between user intentions especially when users 167

have multiple intentions affecting users’ behaviors. They also 168

ignore structured user intent transition which can provide a 169

strong inductive bias for sequential recommendation. 170

Structured Modeling. The ability to understand struc- 171

tured relationships in raw sensory data is an important 172

component of human cognition [30] and graphs are a 173

natural representation to model such structured relationships. 174

Thanks to the rapid development of Graph Neural Network 175

(GNN), there are more and more research works focusing on 176

structure modeling [31], [32], which generally aim to model 177
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the relationships and dynamics among nodes in graphs.178

By studying the structured relations behind the observed179

data, these models can not only improve their predictive180

performance but also simulate the cognitive process of181

human decision making. The majority of the existing works182

on utilizing graphs to simulate human cognitive process183

belong to the field of physical systems and computer vision.184

To overcome the limitations of models based on low-level185

pixel reconstruction, Kipf et al. [30] model the state transi-186

tion of high-level objects in physical systems and Kossen187

et al. [33] explicitly reason about the relationships between188

objects in videos over a graph structure. However, utilizing189

the graph structure to identify user intentions and infer190

their relationships for providing better recommendations191

is largely unexplored in sequential recommendation. We192

note that there also exist several works mapping items to193

nodes/entities in knowledge graphs and utilizing the extra194

information provided by the knowledge graphs to enhance195

recommendation [34], [35]. These works follow a different196

problem setting and are therefore orthogonal to our problem197

in this paper.198

3 METHOD199

In this section, we first introduce the problem formulation200

and then present the proposed ISRec model in detail.201

Notations in this paper are summarized in Table 1.202

3.1 Problem Formulation203

In this paper, we consider a sequential recommendation204

problem where U = {u1, u2, ..., u|U|} denotes the set of users205

and V = {v1, v2, ..., v|V|} represents the set of items. A user206

behavior dataset consists of the interactions between these207

|U| users and |V| items. For each user u ∈ U , the interaction208

sequence sorted in the chronological order is denoted as209

Su =
[
v

(u)
1 , v

(u)
2 , ..., v

(u)
|Su|

]
, in which v(u)

t ∈ V is the item that210

user u interacted at time index t. Specifically, similar to [1],211

[4], [5], [6], the time index t in v(u)
t denotes the order in which212

an action occurs in Su with larger t indicating a more recent213

interaction, and we do not consider the absolute timestamp214

as in temporal recommendations [10], [36].215

In addition to the interaction sequence, we also consider216

available description information of items, e.g., item titles,217

categories, reviews, etc. For each item, we extract keywords218

from all description information and refer to these extracted219

keywords as concepts. These concepts indicate the possible220

intentions of users while interacting with the corresponding221

items and provide the source of explainability. We use an222

item-concept matrix E = [ei,k, 1 ≤ i ≤ |V| , 1 ≤ k ≤ K] to223

denote relations between items and concepts, where ei,k = 1224

if concept k appears in the description information of item225

i, ei,k = 0 otherwise, and K is the number of concepts. In226

our method, the user intention is defined as a subset of all227

possible K concepts, denoted as a multi-hot intention vector228

mt = [mt,1,mt,2, ...,mt,K ] ∈ {0, 1}K . Namely, the user229

intentions at time index t consist of the concept k if mt,k = 1.230

The intention graph is defined as a graph representing the231

relations between the K concepts, which consists of concept-232

relation-concept triples. The intention transition is defined233

as predicting the intentions at the next time index, which234

TABLE 1: Notations used in this paper.

Notation Description

U ,V user and item set
Su interaction item sequence of user u
T maximum sequence length
K number of total concepts
λ number of activated concepts
E ∈ {0, 1}|V|×K item-concept matrix
d, d′ ∈ N latent vector dimensionality
V ∈ R|V|×d item embedding matrix
C ∈ RK×d concept embedding matrix
P ∈ RT×d positional embedding matrix
t index of the time
mt ∈ RK intention vector
xt ∈ Rd representation of the behavior sequence
Zt ∈ RK×d′ intention feature matrix

are correlated with the intentions now, conditioned on the 235

intention graph. 236

Given all this information, the sequential recommenda- 237

tion problem can be formalized as to predict the probability 238

over all items for every user u ∈ U at time index t = |Su|+1: 239

240

p
(
v

(u)
|Su|+1|Su

)
.

3.2 Model Framework 241

The framework of ISRec is shown in Fig. 1. ISRec consists 242

of the following 4 modules: (1) Transformer-based Encoder: 243

we use a two-layer transformer to encode the item sequence. 244

As the core of the transformer, the self-attention mechanism 245

can capture the dependencies between items in the behavior 246

sequence. (2) Intent extraction: we extract the intentions 247

of users from the representation of the item sequence. 248

(3) Structured intent transition: we infer the possible user 249

intentions at the next time index using a structured transition. 250

(4) Intent decoder: based on the intents identified in the last 251

module, the intent decoder predicts which item out of V is 252

mostly likely to be interacted by the user. We elaborate the 253

details of the 4 modules in the following subsections. 254

3.3 Transformer-based Encoder 255

The transformer-based encoder further consists of two sub- 256

modules: the embedding submodule and the self-attention 257

submodule. 258

Embedding Submodule. To represent an item sequence, 259

we first construct an item embedding matrix V = 260

[v1, ...,v|V|] ∈ R|V|×d, where each item vi ∈ V is represented 261

as a d dimensional vector vi, and a concept embedding 262

matrix C = [c1, ..., cK ] ∈ RK×d, where each concept is also 263

represented as a d dimensional vector ci. To encode the 264

position of items in the sequence, we adopt an additional 265

positional embedding P = [p1, ...,pT ] ∈ RT×d, where pi 266

represents the embedding of position i, and T is a preset 267

maximum sequence length. The representation of an element 268

in the behavior sequence is obtained as: 269

hi = vi + pi +
∑

ei,j=1

cj , (1)
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Fig. 1: ISRec Model Framework. After passing the user interaction sequence to a Transformer-based encoder, the keys of
ISRec are intent-aware modules which include an intent extraction module and a structured intent transition module. Then,
an intent decoder module output recommendation results using the identified user intents.

i.e., we sum the item embedding, the concepts embedding270

corresponding to the item, and the positional embedding.271

All embedding vectors are parameters that can be learned272

during training.273

After the embedding submodule, we transform the input274

user behavior sequence Su into its hidden representations as275

follows:276

H0 = [h0
1,h

0
2, ...,h

0
T ]. (2)

Self-attention Submodule. We adopt the self-attention277

mechanism to capture the dependencies among different278

items within a behavior sequence. One layer in the self-279

attention submodule can be formulated as follows:280

Sl = SA(H l) = Attention(H lW l
Q,H

lW l
K ,H

lW l
V ), (3)

281

H l+1 = FFN(Sl) = ReLU(SlW l
1 + bl1)W l

2 + bl2, (4)

where W l
Q,W

l
K ,W

l
V ∈ Rd×d are parameters for queries,282

keys, values in the lth attention layer and W l
1,W

l
2 ∈ Rd×d

283

and bl1, b
l
2 ∈ Rd are parameters in the lth feed-forward284

network. The queries, keys, and values come from the285

same place, i.e., the input sequence. The meaning of queries,286

keys, and values is the sequence embedding. Intuitively, the287

attention layer learns to assign different attention weights to288

capture the complex relations among items in the behavior se-289

quence2 and the position-wise feed-forward network endows290

the model with nonlinearities and capture the interactions291

among different dimensionalities. We also apply dropout,292

residual connection, and layer normalization at each layer,293

similar to standard Transformer.294

2To prevent data leakage, we only consider the attention between
Query i and Key j if j ≤ i, i.e., only considering attentions of items
interacted ahead of time.

We denote the outputs of L such layers as X = 295

[x1, ...,xT ] = HL, which are used in subsequent modules. 296

Note that xt has integrated all sequential information before 297

the time index t. 298

3.4 Intent Extraction 299

Here we explicitly extract explainable user intents from the 300

encoded sequence hidden representations X . Note that the 301

intents are changing and not static with respect to the time 302

index t. 303

More specifically, for each time index 1 ≤ t ≤ T , we 304

aim to infer an intention vector mt = [mt,1,mt,2, ...,mt,K ], 305

where mt,k = 1 indicates that concept k belongs to the user 306

intentions appearing in the behavior sequence represented as 307

xt, and mt,k = 0 otherwise. One straightforward approach 308

to learn mt is directly treating mt as a parameter to be 309

optimized. However, it will lead to over-parameterization 310

and cause efficiency burdens since we need to learn a K 311

dimensional intention vector for each user at each time 312

index. As an alternative, recall that we have introduced 313

an embedding vector ci for each concept in the Transformer- 314

based Encoder. We adopt the similarity between the sequence 315

representation and concept embeddings as the probability 316

of activating the concepts. Then, mt can be drawn from the 317

following categorical distribution: 318

mt ∼ Categorical(Softmax(st,1, st,2, ..., st,K)), (5)

where st,k denotes the similarity of the sequence representa- 319

tion xt and the concept embedding ck. We adopt the Gumbel- 320

Softmax estimator to estimate the categorical distribution, 321

which is non-differentiable when trained using standard 322

back-propagation. In choosing similarities, a common choice, 323

the inner product similarity, will result in the mode collapse 324

problem, i.e., only concepts with a large norm will be 325

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:35:15 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3050571, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

activated. To prevent such a degenerated case, we adopt326

the cosine similarity between two vectors, i.e.,327

st,k =
xt · ck

‖xt‖2 ‖ck‖2
, (6)

where · is the dot product and ‖z‖2 is the norm of vector z.328

3.5 Structured Intent Transition329

Next, we conduct intent transitions using the extracted330

intention vector. However, we cannot directly transit mt331

because of two reasons. Firstly, mt is learned by using332

common concept embeddings and thus not personalized.333

Even if two users have similar intentions at time index334

t, their transition patterns may be different, leading to335

different intentions at time index t+1. Secondly, the intention336

vector mt is discrete and contains a single number for337

each intention, which makes the subsequent optimization338

challenging.339

To solve these challenges, we first learn a personalized340

intent feature matrix using the sequence representation xt341

and the intention vector mt. Specifically, denote the intent342

feature matrix as343

Zt = [zt,1, ...,zt,K ] ∈ RK×d′
, (7)

where d′ is the dimensionality and zt,k is the feature vector344

for intent k calculated as:345

zt,k = mt,kMLPk(xt), (8)

i.e., we learn a separate MLP for each concept to transform346

the sequence representation into an intent feature, and only347

activated concepts have non-zero elements. Then, we can use348

Zt for intent transition because it is both personalized and349

continuous.350

To model the relations between different intentions, we351

adopt a graph G with the adjacent matrix denoted as A ∈352

RK×K , where Ai,j indicates the relations between concept353

i and concept j. In this paper, we construct A based on the354

publicly available concept graph (i.e., ConceptNet3). Ai,j = 1355

if concept i and j have semantic relations in ConceptNet,356

and Ai,j = 0 otherwise. Our method can also be extended357

to other available concept relations or learning the relation.358

We adopt the message-passing framework [37] to model359

the transition of intents on the concept graph:360

Zt+1 = F(Zt,A), (9)

where F(·) is the message-passing function. Specifically, we361

adopt Graph Convolutional Network (GCN) [38], a simple362

yet effective message-passing architecture, where the lth363

GCN layer is:364

H l+1
G = σ(D̂−

1
2 ÂD̂−

1
2H l
GW

l), (10)

where H l
G is node representations in the lth layer, W l is a365

learnable weight matrix, σ is a non-linear activation function366

such as ReLU, Â = A + I , I is the identity matrix, and D̂367

is a diagonal degree matrix with D̂i,i =
∑

j Âi,j . Intuitively,368

GCNs pass the node features to their neighborhoods in each369

layer, thus modeling the relations between different nodes,370

i.e., concepts.371

3http://conceptnet.io/

The intent transition process can be modeled as taking 372

the intent feature matrix as the inputs of GCN, i.e., H0
G = Zt, 373

and taking the node representations after L GCN layers as 374

the output of future intents, i.e., Zt+1 = HL
G . Then, we 375

obtain the new intent vector mt+1 by considering the norm 376

of the corresponding intent feature vector, i.e., mt+1,k = 1 if 377

and only if ‖zt+1,k‖2 ≥ g({‖zt+1,k‖2 , 1 ≤ k ≤ K}), where 378

g is an operator that outputs the λ-th largest value of the 379

input. This guarantees that the number of activated concepts, 380

i.e., λ, that remains the same in the course of time, i.e., 381∑
kmt,k =

∑
kmt+1,k. 382

3.6 Intent Decoder 383

After obtaining the future intent features Zt+1 and the future 384

intent vector mt+1, we need to make recommendations on 385

the next item. We adopt a decoder as follows: 386

xt+1 =
K∑

k=1

mt+1,kMLP′k(zt+1,k). (11)

Eq. (11) can be considered as a reverse process of Eq. (8) to 387

decode the intent features into a sequence representation. 388

Then we calculate the similarity of the sequence rep- 389

resentation with the item embedding vector to obtain a 390

recommendation probability: 391

p(vt+1|[v1, v2, ..., vt]) = Softmax(xt+1V
T ) (12)

3.7 Objective Function and Optimization 392

Following the conventional training methods of sequential 393

recommendation, we train the model by predicting the next 394

item for each position in the input sequence. i.e., predicting 395

vt+1 given the input sequence [v1, v2, ..., vt]. We adopt the 396

negative log-likelihood as the objective function and take the 397

average of all users, i.e., 398

Lu =
1

|S(u)|
∑

vt+1∈S(u)

− log p(vt+1|[v1, v2, ..., vt]), (13)

399

L =
1

|U|
∑
u∈U
Lu + α||Θ||22, (14)

where α denotes the regulation coefficient and Θ denotes 400

all model parameters. It is easy to see that all modules of 401

ISRec are differentiable and thus the model can be trained 402

end-to-end using back-propagation. The training procedure 403

of our method is listed in Appendix A. 404

3.8 Time Complexity Analysis 405

Here, we analyze the time complexity of the proposed 406

method, given the user interaction item sequence with the 407

length n. The time cost mainly comes from the following 408

three parts, namely the Transformer layer, the Multi-layer 409

Perceptron (MLP), and the Graph Convolutional Network 410

(GCN). For the Transformer-based encoder, the complexity 411

is O(n2d+ nd2) from the self-attention and the feedforward 412

network. The dominant term is O(n2d) due to the self- 413

attention, where d is the dimensionality of item embedding. 414

Moreover, the MLP in our method has a computational 415

complexity O(nKdd′), where K is the constant number 416

of total concepts, and d′ is the feature dimensionality of 417
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intents. For GCN in the structured intent transition, the418

computational complexity is O(λ2), where λ represents the419

number of activated intentions (nodes) in the concept graph420

G and has a small value in our experiments (more details in421

Section 4). So the overall training complexity of our proposed422

method isO(n2d+nKdd′+λ2). The scalability concern about423

our proposed method is that its computational complexity is424

quadratic with the input sequence length n due to the self-425

attention mechanism. Fortunately, a convenient property of426

ISRec is that the self-attention computation can be effectively427

parallelized, which is amenable to GPU acceleration.428

3.9 Discussion429

To provide more insights of our proposed method ISRec, we430

analyze the relationship between ISRec and other existing431

sequential recommendation methods.432

Markov Chains (MC) based methods. There are many433

works on sequential recommendation adopting Markov434

Chains (MC), which can be typically divided into two435

types, namely first-order MC based methods (e.g., FPMC436

[1], TransRec [2], etc.) and high-order MC based methods437

(e.g., Fossil [9], Caser [6], etc.). However, these methods only438

capture local sequential patterns, and can not scale well439

with the order that is generally small. Besides, the order of440

MC needs to be specified in advance that is an impactive441

hyperparameter. Compared with these methods, our ISRec442

is conditioned on previous T items, and is able to deal with443

hundreds of historical interacted items empirically (more444

details in section 4). Due to the attention mechanism, ISRec445

can adaptively attend on informative items of input sequence446

instead of focusing on the last few items.447

RNN based methods. RNN-based methods are recent448

representative works for modeling sequence, including449

GRU4Rec [21], GRU4Rec+ [22], etc. However, these methods450

have a high dependency on time steps. The behavior on451

time step t has to wait for the results until time step t − 1.452

Compared with our method, they can not be effectively453

parallelized using GPU.454

Transformer based methods. Transformer based meth-455

ods are also representative works recently. SASRec [4] adopts456

transformer to predict the next item for each position in a457

sequence. BERT4Rec [5] predicts the masked items in the458

sequence using Cloze objective. These methods make full459

use of self-attention to capture the item relations between460

user sequence behaviors but are incapable of capturing user461

intentions hidden in the behaviors. We argue that the user462

intentions play an important role in driving users to conduct463

certain behaviors. Besides, our method can be treated as a464

generalization of these methods. If we do not extract user465

intentions from behavior sequence (by removing the intent466

extraction module) or conduct intent transition (by removing467

structured intent transition module), our ISRec method can468

degenerate to the transformer based methods. In section 4,469

we show the significance of capturing the user intentions470

and structured intent transitions with ablation study.471

4 EXPERIMENTS472

In this section, we evaluate our proposed method through473

experiments. We aim to answer the following three questions:474

• Q1: How does ISRec perform compared with other 475

state-of-the-art sequential recommendation methods? 476

• Q2: Can ISRec identify explainable user intents and 477

model the structured intent transition accurately? 478

• Q3: Is the intent extraction and structured intent 479

transition module helpful in ISRec? 480

4.1 Datasets 481

We compare ISRec with baselines on five publicly available 482

datasets from four real world applications. 483

• Amazon [39]4: This dataset contains a large number of 484

product reviews from Amazon.com and is split into 485

multiple datasets according to the top-level product 486

categories. In our experiments, we choose the “Beauty” 487

category dataset. Besides interaction records, we also 488

extract the concepts of items from two fields (i.e., 489

“product title” and “review text”) in reviews data. 490

• Steam [4]5: This dataset contains rich English reviews, 491

crawled from Steam, a popular online video game 492

platform. Also, we extract interaction records and 493

concepts of items from two fields, i.e., “app name” 494

and “review text” in reviews. 495

• Epinions [40]6: This dataset is collected from a popu- 496

lar online consumer review website Epinions.com. It 497

contains rating scores and review texts of users on the 498

website, and spans more than a decade, from January 499

2001 to November 2013. We extract interaction records 500

from rating scores and concepts of items from “item 501

title” and “review text”. 502

• MovieLens [41]7: This dataset is about movie rating 503

and has been widely used to evaluate recommenda- 504

tion algorithms. We use two versions, i.e., ML-1m and 505

ML-20m, containing 1 million and 20 million rating 506

records, respectively. We extract interaction records 507

from rating data and concepts of each movie from 508

"movie name", and "genre" for ML-1m and "tag" for 509

ML-20m. 510

We follow the preprocessing procedure in [1], [4], [5], 511

[6] as follows. First, we convert all reviews (for Amazon, 512

Steam, and Epinions) or numeric ratings (for MovieLens) to 513

implicit feedback of 1 (i.e., the user interacted with the item). 514

Then we group the interaction records by users and build the 515

interaction sequence sorted according to the timestamps for 516

each user. We remove all users and items if they have fewer 517

than 5 records. The statistics of the preprocessed datasets 518

is summarized in Table 3, where “#Users” is the number of 519

users, “#Items” is the number of items, and “#Interactions” 520

means the number of interactions between users and items 521

in each dataset. “Avg.length” denotes the average interaction 522

sequence length of users, and “Density” is a common metric 523

to describe how dense the user item interaction is. These 524

datasets come from different domains and have diverse 525

statistics. 526

We further obtain the concepts of items from the available 527

meta-data, i.e., the descriptions of items. For Amazon, 528

4http://jmcauley.ucsd.edu/data/amazon/
5https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
6https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
7https://grouplens.org/datasets/movielens/
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TABLE 2: Overall performance comparison of ISRec and baselines. In each row, the boldfaced score denotes the best result
and the underlined score represents the second-best result. Our ISRec outperforms all the baselines consistently in all
evaluation metrics on different datasets. The relative improvements of ISRec over the second-best result are shown in the
last column.

Datasets Metric PopRec BPR-MF NCF FPMC GRU4Rec GRU4Rec+ DGCF Caser SASRec BERT4Rec ISRec Improv.

Beauty

HR@1 0.0077 0.0415 0.0407 0.0435 0.0402 0.0551 0.0626 0.0475 0.0906 0.0953 0.1233 29.38%
HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1781 0.1835 0.1625 0.1934 0.2207 0.2734 23.88%
HR@10 0.0762 0.1992 0.2142 0.2401 0.2343 0.2654 0.2778 0.2590 0.2653 0.3025 0.3594 18.81%
NDCG@5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1172 0.1241 0.1050 0.1436 0.1599 0.2020 26.33%
NDCG@10 0.0349 0.1064 0.1124 0.1211 0.1074 0.1453 0.1543 0.1360 0.1633 0.1862 0.2296 23.31%
MRR 0.0437 0.1006 0.1043 0.1056 0.1023 0.1299 0.1381 0.1205 0.1536 0.1701 0.2081 22.34%

Steam

HR@1 0.0159 0.0314 0.0246 0.0358 0.0574 0.0812 0.0564 0.0495 0.0885 0.0957 0.1450 51.52%
HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.2391 0.1825 0.1766 0.2559 0.2710 0.3622 33.65%
HR@10 0.1389 0.1993 0.2169 0.2551 0.3313 0.3594 0.2934 0.2870 0.3783 0.4013 0.5072 26.39%
NDCG@5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1613 0.1392 0.1131 0.1727 0.1842 0.2570 39.52%
NDCG@10 0.0665 0.1005 0.1026 0.1283 0.1802 0.2053 0.1717 0.1484 0.2147 0.2261 0.3036 34.28%
MRR 0.0669 0.0942 0.0932 0.1139 0.1420 0.1757 0.1400 0.1305 0.1874 0.1949 0.2612 34.02%

Epinions

HR@1 0.0075 0.0151 0.0155 0.0162 0.0169 0.0176 0.0188 0.0164 0.0217 0.0220 0.0282 28.18%
HR@5 0.0339 0.0472 0.0538 0.0578 0.0629 0.0737 0.0736 0.0733 0.0822 0.0866 0.1129 30.37%
HR@10 0.0831 0.1005 0.0975 0.1083 0.1280 0.1380 0.1353 0.1351 0.1358 0.1462 0.1949 33.31%
NDCG@5 0.0206 0.0316 0.0338 0.0373 0.0431 0.0456 0.0491 0.0444 0.0530 0.0534 0.0699 30.90%
NDCG@10 0.0358 0.0464 0.0474 0.0512 0.0565 0.0657 0.0656 0.0642 0.0701 0.0724 0.0962 32.87%
MRR 0.0430 0.0540 0.0543 0.0546 0.0681 0.0700 0.0693 0.0668 0.0699 0.0705 0.0885 25.53%

ML-1m

HR@1 0.0141 0.0914 0.0397 0.1386 0.1583 0.2092 0.1770 0.2194 0.2351 0.2863 0.3184 11.21%
HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5103 0.4485 0.5353 0.5434 0.5876 0.6262 6.57%
HR@10 0.1358 0.4301 0.3477 0.5946 0.6207 0.6351 0.6032 0.6692 0.6629 0.6970 0.7363 5.64%
NDCG@5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3705 0.3162 0.3832 0.3980 0.4454 0.4831 8.46%
NDCG@10 0.0621 0.2365 0.1640 0.3439 0.3627 0.4064 0.3660 0.4268 0.4368 0.4818 0.5189 7.70%
MRR 0.0627 0.2009 0.1358 0.2891 0.3041 0.3462 0.3105 0.3648 0.3790 0.4254 0.4589 7.87%

ML-20m

HR@1 0.0221 0.0553 0.0231 0.1079 0.1459 0.2021 0.1760 0.1232 0.2544 0.3440 0.3505 1.89%
HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.5118 0.4361 0.3804 0.5727 0.6323 0.6484 2.55%
HR@10 0.1378 0.3538 0.2922 0.5201 0.5844 0.6524 0.6252 0.5427 0.7136 0.7473 0.7689 2.89%
NDCG@5 0.0511 0.1332 0.0771 0.2239 0.3090 0.3630 0.3267 0.2538 0.4208 0.4967 0.5024 1.15%
NDCG@10 0.0695 0.1786 0.1271 0.2895 0.3637 0.4087 0.3809 0.3062 0.4665 0.5340 0.5401 1.14%
MRR 0.0709 0.1503 0.1072 0.2273 0.2967 0.3476 0.3278 0.2529 0.4026 0.4785 0.4841 1.17%

TABLE 3: Statistics of the datasets.

Dataset #Users #Items #Interactions Avg.length Density

Beauty 40,226 54,542 0.35m 8.8 0.02%
Steam 281,428 13,044 3.5m 12.4 0.10%

Epinions 5,015 8,335 26.9k 5.37 0.06%
ML-1m 6,040 3,416 1.0m 163.5 4.79%
ML-20m 138,493 26,744 20m 144.4 0.54%

TABLE 4: Statistics of preprocessed concepts of the datasets.

Dataset #Concepts #Edges Avg.concepts/item

Beauty 592 2,791 4.45
Steam 229 472 4.49

Epinions 114 467 5.50
ML-1m 96 327 1.94
ML-20m 316 842 4.21

Steam, and Epinions dataset, we adopt the keywords in529

item title and review text. To reduce noises introduced by530

uncommon words, we only consider the keywords existing in531

ConceptNet [42], a widely used semantic network containing532

common sense concepts as well as their relationships people533

use in daily life. We map the n-grams in the item titles and534

review texts to the concepts in ConceptNet. For example, the535

review “I bought these athletic shoes which are comfortable.”536

contains three concepts: athletic, shoes, and comfortable.537

These concepts are a subset of words that correspond to538

important explicit features of items and intents of users. For539

MovieLens, we adopt a similar approach as Amazon, Steam,540

and Epinions by only taking movie titles and genre/tag541

into account since no review information is available. For 542

all datasets, we also filter both extremely rare concepts 543

(occurring in less than 0.5% of reviews), domain-dependent 544

frequent concepts, (e.g., "beautiful" in Beauty and "games" 545

in Steam), and meaningless concepts manually. In addition, 546

based on the chosen concepts, we build an intention graph 547

G based on ConceptNet for each dataset. The graph G 548

contains the relational knowledge between concepts. For 549

example, the concept “sport” has edges with other concepts 550

like “health”, “entertainment”, and “injury”. The statistics 551

of the preprocessed concepts and the filtered graph are 552

shown in Table 4, where “#Concepts” denotes the number of 553

concepts in each dataset, and “#Edges” denotes the number 554

of relations. We also list the average concepts per item in the 555

table. 556

4.2 Experimental Settings 557

4.2.1 Evaluation settings 558

We adopt the common leave-one-out evaluating strategy in 559

sequential recommendation [4], [6], [43], i.e., predicting the 560

next item in user sequence. Specifically, for each user u with 561

interaction sequence Su = [v
(u)
1 , v

(u)
2 , ..., v

(u)
|Su|], we hold-out 562

v
(u)
|Su| and v(u)

|Su|−1 for testing and validation, respectively, and 563

use the rest sequence for training. In addition, we follow [5] 564

and randomly sample 100 negative items that the user does 565

not interact with as negative items. The task is to rank these 566

101 items including 1 ground-truth positive item and 100 567

negative items. 568
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4.2.2 Metrics569

Based on the results of ranking, we evaluate all the models570

in terms of three commonly used criteria.571

• Hit Rate. Hit Rate (HR) gives the percentage that572

recommended items contain at least one correct573

item interacted by the user. For each user, since we574

only have one ground truth item in the test set,575

HR@k equals to Recall@k, indicating that whether576

the ground-truth positive items emerge in the top-k577

recommended items.578

HR@k =
1

|U|
∑
u∈U

δ(|Tu ∩Ru,k| > 0), (15)

where Tu denotes the set of testing items for user u,579

Ru,k is the set of top-k items recommended for user u.580

δ(x) is the indicator function, whose value is 1 when581

x is true, and 0 otherwise.582

• Normalized Discounted Cumulative Gain. Normal-583

ized Discounted Cumulative Gain (NDCG) takes the584

exact position of the correctly recommended items585

into account.586

NDCG@k =
1

Z
DCG@k

=
1

Z

1

|U|
∑
u∈U

k∑
i=1

δ(ru,i ∈ Tu)

log2(i+ 1)
,

(16)

where ru,i is the k-th item recommended for user u.587

Z is a normalization constant, which is the maximum588

possible value of DCG@k.589

• Mean Reciprocal Rank. Mean Reciprocal Rank590

(MRR) is the mean of reciprocal of the rank at which591

the ground-truth item was retrieved.592

MRR =
1

|U|
∑
u∈U

1

ranku
, (17)

where ranku refers to the rank position of the ground593

truth item in the positive and negative items for user594

u.595

In our experiments, k is set to 1, 5, and 10. We report the596

average results of these metrics across all users. For all these597

metrics, the higher the value, the better the performance.598

4.2.3 Baselines599

To verify the effectiveness of our method, we compare ISRec600

with the following recommendation baselines.601

• PopRec: It is the simplest method that ranks all items602

according to their popularity, i.e., the number of603

existing interactions.604

• BPR-MF [44]: It combines Bayesian personalized605

ranking with matrix factorization model and learns606

personalized rankings from implicit feedback.607

• NCF [43]: NCF is a classical method that leverages a608

Multi-Layer Perceptron (MLP) to learn the user-item609

interaction function.610

• FPMC [1]: To capture users’ long-term preferences611

and behavior patterns, FPMC combines matrix factor-612

ization and first-order Markov chains.613

• GRU4Rec [21]: It is a session-based recommendation 614

method that employs GRU to characterize user be- 615

havior sequences. We treat the interaction sequence 616

of each user as a separate session. 617

• GRU4Rec+ [22]: It improves GRU4Rec by using a 618

new sampling strategy and an improved loss function. 619

• DGCF [28]: DGCF is an intention-aware method that 620

considers user-item relationships at the granularity of 621

user intentions by disentangled representations. 622

• Caser [6]: It is a unified and flexible method for 623

capturing both general user preferences and user 624

behavior patterns by utilizing CNN to model high- 625

order Markov chains. 626

• SASRec [4]: It is a transformer based method that 627

identifies which items are relevant to predict the 628

future item from a user’s behavior sequence. 629

• BERT4Rec [5]: It employs a deep bidirectional self- 630

attention to model user behavior sequences. By adopt- 631

ing the Cloze objective, it predicts the random masked 632

items in the sequence by jointly considering the left 633

and the right context. 634

We do not compare against temporal recommendation meth- 635

ods [10], [36] because they have different settings with ours. 636

We provide the implementation details including parameter 637

settings in Appendix B. 638

4.3 Recommendation Accuracy (Q1) 639

We report the performance of all the methods in Table 28. We 640

make the following observations. 641

Firstly, we can see that the sequential methods (e.g., 642

FPMC and GRU4Rec) outperform the non-sequential meth- 643

ods (e.g., BPR-MF and NCF) in general. The methods that 644

only consider user actions without the sequential order, do 645

not make full use of the sequence information and report 646

the worse performance. Specifically, compared with BPR-MF, 647

the main advantage of FPMC comes from modeling user 648

historical actions with first-order Markov chains, namely 649

considering the sequence order, so that FPMC reports better 650

results than BPR-MF. This can verify that sequential pattern is 651

important for improving the predictive ability for sequential 652

recommendations. 653

The attention mechanism can provide reasonably large 654

performance gains. SASRec and BERT4Rec, using a left-to- 655

right and bidirectional self-attention respectively to model 656

user behavior sequences, outperform the other non-attention 657

based methods. The results are consistent with the litera- 658

ture [4], [5]. 659

Our ISRec achieves the best performance on all datasets 660

with respect to all evaluation metrics, demonstrating the su- 661

periority of our model. In general, the proposed ISRec model 662

improves up to 17.41% on HR@10, 19.86% on NDCG@10, 663

and 18.19% on MRR (on average) against the strongest 664

baseline on all datasets. Considering the results of Steam 665

dataset, ISRec achieves significant improvement, i.e., 51.52% 666

on HR@1, 33.65% on HR@5, 26.39% on HR@10, 39.52% 667

on NDCG@5, 34.28% on NDCG@10, and 34.02% on MRR 668

against the strongest baseline. The fact that ISRec greatly 669

8In Table 2, we omit the metric NDCG@1 because it is equal to
HR@1.
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(a) Selected user on Beauty

(b) Selected user on Steam

Fig. 2: Showcases of candidate intent(s) generation and activated intent(s) selection procedures for sequential recommenda-
tions made by ISRec on Beauty and Steam.

outperforms SASRec and BERT4Rec which adopt a similar670

attention module as ISRec but neglects the user intentions671

well prove the importance of modeling user intentions. ISRec672

also achieves better performance than the intention-aware673

method DGCF, indicating the ability of our method to model674

user intentions and the important roles of the structured675

intent transition. By identifying user intents and learning676

the structured intent transition, ISRec shows the ability to677

capture user preferences more effectively.678

We also notice that the improvement of ISRec on Beauty,679

Steam, and Epinions datasets is more substantial than680

the improvement on MovieLens. ISRec improves over the681

strongest baselines w.r.t NDCG@10 by 23.31% on Beauty,682

34.28% on Steam, and 32.87% on Epinions but only 7.70% on683

ML-1m and 1.14% on ML-20m. One plausible reason is that684

the Beauty, Steam, and Epinions datasets are sparser, making685

it more difficult to make recommendations only using the686

co-occurrence statistics in user interaction sequences as687

in the baselines. ISRec alleviates this issue by modeling688

the underlying intentions and the structured transition of689

intentions of users and thus leading to better results.690

4.4 Showcases of Intent Extraction and Structured In-691

tent Transition (Q2)692

To further illustrate the effectiveness of our intent extraction693

and structured intent transition process, we present the inter-694

mediate candidate intent(s) generation and activated intent(s)695

selection procedures for sequential recommendations made696

by our ISRec model.697

Fig. 2 shows the candidate intents generation and acti-698

vated intents selection procedures for two randomly selected699

users, one from Beauty (a) and the other from Steam (b). 700

Each grey box represents a recommended item where the 701

blue rectangle depicts the name of the item (e.g., avocado 702

oil), followed by the candidate intents to be activated (e.g., 703

brightening, moisturizers, defense, mousses, fiber, wrinkle, 704

etc.) and the intention graph indicating the structured 705

relationships among different intentions where the activated 706

intentions are colored with orange (e.g, wrinkle). 707

We observe from Fig. 2 that the user intentions on Beauty 708

transit from wrinkle through scalp and skin to face in the 709

course of time, and transit gradually from crime, fight through 710

war, destruction and tank, military to crime, violent on Steam, 711

demonstrating the effectiveness and explainability of our 712

structured intent transition process. ISRec can also learn 713

to infer user intentions not in the candidate set, e.g., Red 714

Orchestra 2 is about military, showing its strong inference 715

ability. 716

4.5 Effectiveness of Intent Extraction and Structured 717

Intent Transition (Q3) 718

TABLE 5: Performance comparison of ISRec and variants.

Beauty ML-1m
HR@10 NDCG@10 HR@10 NDCG@10

ISRec 0.3594 0.2296 0.7363 0.5189
w/o GNN 0.3311 0.2095 0.7222 0.4978
w/o GNN&Intent 0.3092 0.1965 0.7058 0.4731

BERT4Rec + concept 0.3037 0.1886 0.6987 0.4824
SASRec + concept 0.3061 0.1845 0.6972 0.4643

To gain a deep insight on the ISRec, we perform ab- 719

lation studies over a number of key components related 720
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Fig. 3: Impact of different intent feature dimensionalities on model performance on Beauty.

1 2 5 10 15 20 25
# Intent

0.095

0.100

0.105

0.110

0.115

0.120

HR
@

1

1 2 5 10 15 20 25
# Intent

0.255

0.260

0.265

0.270

0.275

HR
@

5

1 2 5 10 15 20 25
# Intent

0.345

0.350

0.355

0.360

0.365

HR
@

10

1 2 5 10 15 20 25
# Intent

0.178
0.180
0.183
0.185
0.188
0.190
0.193
0.195

ND
CG

@
5

1 2 5 10 15 20 25
# Intent

0.205
0.208
0.210
0.213
0.215
0.218
0.220
0.223

ND
CG

@
10

1 2 5 10 15 20 25
# Intent

0.182
0.185
0.188
0.190
0.193
0.195
0.198
0.200
0.202

M
RR

Fig. 4: Impact of different numbers of intents allowed to be activated on model performance on Beauty.

to extracting intentions and structured intent transition.721

We compare ISRec with the following two variants: one722

without the message-passing in Section 3.5, i.e., setting the723

intention feature Zt+1 = Zt, and one without the message-724

passing nor the intention extraction module, i.e., setting725

xt+1 = xt. We term these two variants “w/o GNN” and726

“w/o GNN&Intent”, respectively. The results are shown in727

Table 5. We only report the results using the metric HR@10728

and NDCG@10 on Beauty and ML-1m, while results using729

other metrics and datasets show a similar pattern.730

• ISRec w/o GNN&Intent reports similar results as731

BERT4Rec. Since we also use a transform-based732

encoder, such results are consistent with our model733

design.734

• Both intent extraction and structured intent transition735

modules can significantly improve the performance736

of ISRec, demonstrating the significance of accurately737

modeling structured transition of user intents.738

We also consider incorporating available concepts for some739

baselines. We choose the second-best and third-best methods740

in Table 2, i.e., BERT4Rec and SASRec. From Table 5, we741

can observe the performance gain of these variants (terms as742

“BERT4Rec + concept” and “SASRec + concept”) due to the743

concept information, compared with the results in Table 2.744

However, ISRec still outperforms these two variants using745

the same extra concept information.746

4.6 Sensitivities of Hyperparameters747

We also conduct experiments testing the influences of dif-748

ferent hyperparameter settings on the performance of our749

ISRec model.750

4.6.1 Impact of feature dimensionality of intents d′751

Fig. 3 shows how varying the feature dimensionality of752

intents can affect the performance of ISRec on Beauty. We753

observe that the performance first increases with larger754

feature dimensions and drops after the intent feature dimen-755

sionality exceeds 8 in terms of most metrics. A larger hidden756

dimensionality of d′ does not necessarily lead to better model757

performance, which is probably caused by overfitting.758

4.6.2 Impact of numbers of activated intents λ759

Fig. 4 presents the influences of different numbers of760

activated intents on the model performance. Similar to761

the feature dimensionality, the performance of ISRec first 762

increases and then drops after a peak which occurs between 763

10 and 15. The results show that though setting large values 764

for hyperparameters will increase the model capacity, it 765

will not always lead to better results, indicating that setting 766

hyperparameters corresponding to real user intents is helpful 767

for ISRec. In our experiments, we find that uniformly setting 768

the feature dimensionality as 8 and the number of intents as 769

10 leads to satisfactory performance. 770

4.6.3 Impact of maximum sequence length T 771

TABLE 6: Performance with different maximum sequence
length T

T 10 20 30 40 50

Beauty HR@10 0.3401 0.3609 0.3608 0.3598 0.3594
NDCG@10 0.2128 0.2304 0.2303 0.2301 0.2296

T 10 50 100 200 300

ML-1m HR@10 0.5873 0.7108 0.7230 0.7363 0.7360
NDCG@10 0.3753 0.4890 0.5059 0.5189 0.5187

To verify the impact of the maximum sequence length 772

T , we consider the different settings that T is 10, 20, 30, 40, 773

50 for Beauty dataset, and T is 10, 50, 100, 200, 300 for ML- 774

1m dataset. Table 6 summarizes the performance of ISRec 775

with various T . We can observe that for Beauty dataset the 776

best performances are achieved on a small value T = 20, 777

because the average sequence length of Beauty is only 8.8 778

(shown in Table 3). However, ML-1m dataset prefers a larger 779

T = 200, because its average sequence is up to 163.5. This 780

indicates the proper maximum sequence length T is highly 781

dependent on the average sequence length of the dataset. 782

Although a larger T can consider more sequence information, 783

it will also introduce more noise. So the performances do 784

not consistently benefit from a larger T . As the T increases, 785

the performances of our method tend to be relatively stable, 786

showing that ISRec can focus on the useful informative items 787

and filter the noise from user interaction sequence. 788

5 CONCLUSIONS 789

In this paper, we study the intent-aware sequential rec- 790

ommendation problem with structured intent transition. 791

We propose an intention-aware sequential recommendation 792
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(ISRec) method which is able to discover the user intentions793

behind her behaviors history and model the structured user794

intention transition patterns. Our proposed ISRec model795

can make accurate sequential recommendations with more796

transparent and explainable intermediate results for each797

recommendation. Extensive experiments on various datasets798

demonstrate the effectiveness of ISRec compared with other799

state-of-the-art baselines and case studies show that we can800

identify dynamic user intents accurately.801
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